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Abstract

Dynamical Energy Analysis (DEA) is an approach for studying the vibro-acoustic response of
complex systems in the high frequency limit. The method has been extended to industrial scale
applications using an efficient implementation on meshes known as Discrete Flow Mapping. DEA
is a deterministic boundary transfer operator method for the modelling of phase-space densities
(or ray densities) arising in the ray-tracing approximation of a linear wave problem. In this work,
we investigate extensions of the DEA approach to stochastic boundary transfer operator methods
by replacing the deterministic description of the ray flow with a probabilistic flow map incorporating
various sources of uncertainty. We will present efficient numerical approaches with relevance to
high-frequency vibro-acoustic wave problems.
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A boundary integral operator method for modelling
uncertainties in vibro-acoustics

1 Introduction
Boundary integral formulations for propagating particle or ray densities along ray trajectories
in computer graphics applications are often termed the rendering equation [1]. Consequently
the rendering equation lies at the heart of a wide variety of algorithms, both for applications in
computer graphics [1] and beyond [2, 3, 4]. The point of departure for this study stems from
the observation that the rendering equation may be formulated using deterministic transfer op-
erators of Frobenius-Perron (FP) type [4, 5]. Replacing the deterministic transfer operator with
a stochastic one results in a boundary integral formulation for stochastic propagation of ray
densities. The simplest implementation of a stochastic treatment is to assume that rays propa-
gate uniformly with equal probability of all admissible propagated ray vectors. This formulation
is known as the radiosity method (with Lambertian reflection) in the room acoustics community
[2, 3]. A more widely applicable implementation arises if one assumes that the mapped ray
vector is normally distributed, with mean given by the associated deterministic dynamics. The
resulting stochastic evolution operator will be of Fokker-Planck type as discussed in [6, 7]. The
choice of variance in this approach allows the model to be tuned to the level of uncertainty pre-
scribed by the application. Example applications arise in fluid dynamics [8], weather forecasting
[9], linear wave dynamics or in general in describing the evolution of phase-space densities of
a dynamical system.

In this work, we present a family of boundary integral approaches based on the use of stochas-
tic evolution operators. We will discuss how a scaled and truncated Gaussian probability distri-
bution leads to an integral equation model that interpolates between uniformly stochastic and
deterministic propagation. One can view the small variance limit as approximating a (multi-
dimensional) delta distribution by a sequence of Gaussians of decreasing width. Scaling is
necessary to prevent the uncertainty from introducing artificial energy losses into the system
due to truncation of the infinite tails of the Gaussian. We then detail the modelling of two
specific sources of vibro-acoustic uncertainty within this stochastic evolution operator frame-
work; namely, we describe the modelling of (i) uncertain (or rough surface) reflections and
(ii) uncertainties in the location of a point source driving the system. Once the variance has
been prescribed according to the (estimated) level of uncertainty in the model, an appropriate
numerical solution approach can be applied. These are typically the usual approaches for nu-
merically solving integral equations, such as the Nyström, collocation or Galerkin methods. We
then present the results of some supporting numerical simulations to demonstrate the practical
application of the above described methodology.
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2 Boundary integral operator model for the stochastic propagation
of densities

2.1 Governing boundary integral equations

Consider phase-space in two-dimensions with r ∈ R2 the spatial position and p ∈ R2 is the mo-
mentum or slowness vector. Let Ω denote a finite two-dimensional domain with an associated
speed of propagation c. The Hamiltonian Ĥ = c|p| = 1 therefore describes the ray trajectories
within Ω between reflections due to hitting the boundary Γ = ∂Ω. We write the phase-space
coordinates on the boundary of Ω as X = (s, p), where s is an arc-length parametrisation of Γ

and p = c−1 sin(θ) is the tangential component of the momentum vector p at the point s, where
θ ∈ (−π/2,π/2) is the angle between the trajectory leaving the boundary at s and the normal
vector to Γ (also at s).

The stochastic propagation of a density ρ through phase-space is described by an operator of
the form

Lσ ρ(X) =
∫

Q
fσ (X−ϕ(X ′))ρ(X ′)dX ′. (1)

Here Q = Γ× (−c−1,c−1) denotes the phase-space on the boundary and ϕ : Q→ Q defines the
boundary flow map, which maps a vector in Q to another vector in a subset of Q, leading to
a deterministic evolution of the form ϕ(X ′) = X, where X ′ = (s′, p′), X = (s, p). Geometrically
ϕ corresponds to the composition of a translation (from s′ to s) and a rotation to the direction
corresponding to a specular reflection. The kernel of the boundary integral operator (1) is given
by a probability density function (PDF) fσ such that∫

Q
fσ (X)dX = 1, (2)

and σ is a parameter set controlling its shape.

With reference to applications in vibro-acoustics, this probabilistic behaviour could be attributed
to, for example, fluctuations in the wave speed c, roughness of the reflecting surface or un-
certainty in the exact position of the boundary or a source term. In the following, we will
focus on how such models can be applied to model rough surface reflections and uncertain
sources. In all cases we assume that the total energy Ĥ = c|p| = 1 remains fixed and that the
total probability is conserved, that is, condition (2) holds throughout. Note that in contrast to
the models considered in [6, 7], the range of integration in the domains considered here is in
general bounded, which has implications for the choice of suitable PDFs fσ . The simplest case
is to take fσ = const, upon which one arrives at a model describing propagation to all admis-
sible positions and directions with equal probability. The system is thus by definition ergodic
and independent of the underlying classical dynamics. In general, we would like to arrive at a
stochastic operator which includes both deterministic propagation and the random propagation
model described above as limiting cases [10]. In addition, the PDF fσ needs to obey conditions
on the sampling ranges due to the limited range of the boundary map ϕ. For simplicity we will
restrict to convex domains Ω to avoid additional complications due to incorporating visibility
functions.
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For an initial boundary distribution ρ0 on Q, the final equilibrium distribution (including contribu-
tions from arbitrarily many reflections) may be computed using the following boundary integral
equation (see for example [4] and [10]),

(I−Lσ )ρ = ρ0. (3)

Note that for the sum over all reflections to converge, energy losses must be introduced into
the system, which could take place at the boundaries themselves, or along the trajectories.
In general, a weight factor w will be added inside the integral in the definition of Lσ which
contains a dissipative term, and for the extension to multiple domains connected at interfaces
w will also contain reflection/transmission probabilities at these interfaces.

2.2 On the choice of probability distribution function fσ

We may interpret the evolution given by the operator in Eq. (1) as originating from a stochastic
boundary map ϕσ with added noise, that is,

ϕσ (X ′) = X

= ϕ(X ′)+Xε ,
(4)

where Xε = (sε , pε) are random variables drawn from the PDF fσ . Note that sε is understood as
a shift in counter-clockwise direction. For X ∈ Q given, we have to ensure that ϕ(X ′) = X −Xε

is still in the range of the deterministic map ϕ; this yields restrictions on the possible values of
Xε and thus on the domain of fσ .

Source: Ref. [10]

Figure 1: Tracking ray trajectories via a noisy boundary map and truncation limits s± for
the random variable sε .

We define ϕ = (ϕs, ϕp) in terms of its position and momentum components and write the initial
coordinate as X ′ = (s′, p′). The range of admissible values for ϕs(X ′) is [0,L) \ E(s′), where
E(s′) is the (closed) set of all points on the same straight edge as s′, see Fig. 1. Note that
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for curved edges we set E(s′) = s′ as shown in the right plot of Fig. 1. Furthermore, we
have that ϕp(X ′) ∈ (−c−1,c−1). It is therefore necessary to truncate the ranges from which
Xε are sampled to the ranges where for fixed X , ϕ(X ′) ∈ ([0,L) \E(s′)× (−c−1,c−1) in Eq. (4).
Denoting these truncated ranges by (X−,X+) where X±= [s±, p±], the PDF fσ will have support
on Xε ∈ (X−,X+) only. The truncated sampling ranges are given as s+(s′,s) = min{x > 0 : s+
x ∈ E(s′) (mod L)} and correspondingly s−(s′,s) = max{x < 0 : s+ x ∈ E(s′) (mod L)} (see Fig. 1).
Likewise in the momentum coordinate, p+(p) = c−1− p and p−(p) =−c−1− p. Using Heaviside
functions we define a cut-off function for restricting the support of fσ to (X−,X+) as follows

χ(Xε ;X−,X+) = (H(s+− sε)−H(s−− sε))(H(p+− pε)−H(p−− pε)). (5)

Note that we have omitted the dependence of s± and p± on X ′ and X for brevity.

Having obtained the domain of the PDF, we can now construct fσ explicitly; we will derive
the PDF from an uncorrelated bivariate Gaussian distribution with mean 0 = [0,0] and standard
deviation σ = (σ1,σ2). A normalized PDF is then obtained by setting

fσ (Xε ;X−,X+) =

χ(Xε ;X−,X+)exp
(
− s2

ε

2σ2
1

)
exp
(
− p2

ε

2σ2
2

)
2πσ1σ2ψσ1(s−,s+)ψσ2(p−, p+)

, (6)

where the normalization defined through ψσ1 and ψσ2 is given as

ψσ1(s
−,s+) =

1
2

(
erf
(

s+√
2σ1

)
− erf

(
s−√
2σ1

))
, (7)

and ψσ2 is defined analogously. The normalisation ensures that the PDF satisfies condition (2)
for the truncated sampling ranges specified through χ. Note that the mean and variance of fσ

differs in general from that of the underlying Gaussian distribution, but can be computed from
the PDF (6) using standard formulae.

Taking the limit of (6) as σ → 0 then the distribution becomes increasingly sharp and the bivari-
ate Gaussian tends to a two-dimensional delta distribution localised around Xε = X−ϕ(X ′) = 0,
which leads to a deterministic model. Taking the limit as σ1, and σ2 go to ∞ and using the
leading order asymptotic expansion of the error function about 0 returns a uniform distribution
for sε ∈ (s−,s+) and pε ∈ (p−, p+), leading to the fully stochastic regime described above. See
[10] for a more complete discussion of the behaviour of fσ in the limit of small and large σ .

3 Modelling uncertainties
In this section we discuss the modelling of two specific sources of vibro-acoustic uncertainty
within the stochastic evolution operator framework presented above. We describe the modelling
of (i) uncertain/rough surface reflections and (ii) uncertainties in the location of a point source
driving the system.
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3.1 Uncertain reflections

Uncertain or rough surface reflections may be modelled using the PDF (6) by modifying the
parameter σ2. The spatial integral in (1) may be computed analytically for polygonal domains
and remains bounded on setting σ1 = 0, hence in this work we take σ1 = 0 and consider the
influence of the parameter σ2 alone. The directionally dependent part of our PDF becomes
equivalent to the bidirectional reflectance distribution function (BRDF) used in ray tracing for
computer graphics [3]. Models based on a linear combination of diffuse and specular reflections
are typically applied for applications in acoustics [3], which in our notation corresponds to using
the operator

αL(0,∞)+(1−α)L(0,0) (8)

in place of L(0,σ2), where α ∈ (0,1) is a scattering coefficient. The shape of the distribution
given by L(0,σ2) resembles a smoothed version of (8), where a relatively large value of σ2 will
lead to a similar model as a choice of α close to 1, and a relatively small value of σ2 close
to zero will give similar results to a choice of α close to zero. In general, an approximate
correspondence between the scattering coefficient α and σ2 is difficult to establish. However,
we will investigate this numerically in the Sect. 4.

3.2 Uncertain sources

In this section we discuss the source terms ρ0 used to drive the system (3). A source term
arising from an uncertain boundary condition was proposed in [10] and takes the form

ρ0(s, p) =
exp
(
−p2/(2σ2

2 )
)√

2πσ2
2 erf

(
1/(
√

2σ2c)
) . (9)

For small σ2, this corresponds to a unit boundary density propagating (on average) in the
direction p = 0, that is, in the direction of the interior unit normal vector n̂ at s. For large σ2
it corresponds to randomly directed propagation from the boundary. Such a condition may be
applied for all s ∈ Γ, or on a subset of Γ as in [10]. Here a homogeneous Neumann boundary
condition was assumed over the rest of the boundary Γ.

We will also consider an excitation from a point source with an uncertain location. The energy
density on the boundary ρ0 arising from an acoustic velocity potential point source with an
exactly known location r∗0 = (x∗0,y

∗
0) and angular frequency ω is given by [11]

ρ0(s, p;r∗0) =
ωρ f cos(ϑ(s,r∗0))δ (p− p∗0)

8π|rs− r∗0|
. (10)

Here ρ f is the density of the fluid medium and ϑ(s,r∗0) is the minus the angle that the vector
from r∗0 ∈Ω to s ∈ Γ makes with the interior unit normal vector n̂ = (nx,ny) at s. In addition, rs =
(x,y) are the Cartesian coordinates of the point s ∈ Γ and p∗0 = sin(ϑ(s,r∗0))/c is the tangential
component of the slowness vector at s ∈ Γ due to the ray trajectory arriving from r∗0.

We generalise the deterministic point source described above to a stochastic one by consid-
ering a disc DR with centre r∗0 and radius R chosen such that DR ⊂ Ω. We then replace the
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source point with a scaled Gaussian probability distribution inside DR, where the probability
only depends on the radial distance r ∈ [0,R) from r∗0. Explicitly, we obtain

ρ0(s, p;DR) =
ωρ f

8π

∫ 2π

0

∫ R

0

cos(ϑ(s,r0))δ (p− p0)

|rs− r0|
exp(−r2/(2ε2))

2πε2(1− exp(−R2/(2ε2)))
r dr dφ , (11)

where (r,φ) are polar coordinates in DR that govern the location of the source point r0 =
(x0,y0) = (x∗0 + r cosφ ,y∗0 + r sinφ). Also, ε is the standard deviation in the underlying Gaussian
distribution before scaling and p0 = sin(ϑ(s,r0))/c.

In order to also incorporate the uncertain surface reflection effects in Eq. (11), we replace delta
distribution δ (p− p0) by a truncated and normalized Gaussian distribution

exp
(
−(p− p0)

2

2σ2
2

)
√

2πσ2ψσ2(p−, p+)
→ δ (p− p0), as σ2→ 0, (12)

which is analogous to those defined in (6)–(7). In the next section we will numerically investi-
gate the influence of the parameter ε in controlling the focussing and defocussing of the source
term.

4 Numerical results
In this section we describe numerical experiments based on the ideas for modelling vibro-
acoustic uncertainties described above. The discretisation of the model(s) described in the
Sections 2 and 3 is performed using a piecewise constant collocation method in the spatial
variable s and a Nyström method for the momentum variable p. For further details, the in-
terested reader is referred to [10]. We consider a rectangular domain (x,y) ∈ (0, l)× (0,0.25)
where l = 0.75, initially with a boundary condition source of the form (9) along the left hand
edge at x = 0. In the high frequency limit and as σ2→ 0, this problem possesses an analytical
one-dimensional ray tracing solution

ρ(x) =
ρ f

1+η2/16
e−µx + e−µ(2l−x)

1− e−2µl , (13)

where µ = ηω/(2c) is a frequency-dependent dissipation rate along the rays with (hysteretic)
loss factor η and angular frequency ω.

In the left plot of Fig. 2, we show the results of numerical simulations with the uncertain bound-
ary condition (9) for different values of σ2. We choose σ1 = 0, ω = 200π, c = 1, ρ f = 1 and
η = 0.01. After computing the density inside the rectangle, we average over the y-coordinate
for ten subregions of the segment (0,0.75). We plot the natural logarithm of the averaged
density. The numerical results demonstrate that the simulation with σ2 = 0.01 provides a good
agreement with the exact ray tracing solution (13), that is, the limiting case when σ2 → 0. In
addition, a good agreement between the numerical results with σ2 = 10 and σ2 = 100 indicates
that the fully stochastic regime has been achieved by these parameter values. Note that the
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Figure 2: Numerical simulation on rectangle (x,y) ∈ (0,0.75)× (0,0.25) with an uncertain
boundary source at x = 0; logarithm of the interior density averaged over y-coordinate.
Left: numerical solutions with different values of σ2. Right: linear combination opera-
tor αL(0,100)+(1−α)L(0,0.01) solutions for different values of α. Parameter values: σ1 = 0,
ω = 200π, c = 1, ρ f = 1 and η = 0.01.

decrease in the energy density close to x = 0.75 for larger values of σ2 is due to an increased
number of reflections between the upper and lower edges close to the boundary source.

In order to compare our numerical results with the more standard rough surface scattering
model (8), we approximate the operator (8) using

αL(0,100)+(1−α)L(0,0.01)

and perform numerical simulations for different values of α; see the right plot of Fig. 2. Re-
sults for a range of α values are plotted, which give qualitatively similar results to the left plot
where the dependence of the solution on the parameter σ2 was considered. Note that in both
cases, the numerical solutions for different values of α or σ2 interpolate between the purely
deterministic solution, i.e. when α = 0 or σ2→ 0, and the purely stochastic solution when α = 1
or σ2→ ∞.

We now consider numerical experiments with an uncertain point source of the form (11)–(12),
see Fig. 3. We use the same rectangular domain as above and take the same parameter
values: σ1 = 0, ω = 200π, c = 1, ρ f = 1 and η = 0.01. In Fig. 3, a disc DR with radius R = 0.05
and centre r∗0 = (0.2,0.1) is represented by a black circle with a star at the centre. We display
four numerical results for different values of σ2 and ε. For visualization purposes, we triangulate
the domain and plot the logarithm of the interior density computed at the centroids of each
triangle. We consider two values for σ2, that is, approximately specular reflections (σ2 = 0.01)
and approximately diffuse reflections (σ2 = 10). Similarly, we consider the same two values for
ε.

The upper left plot of Fig. 3 shows the interior density corresponding closely to the deterministic
problem with approximately specular reflections at the boundaries and a localised source point
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Figure 3: Energy density distributions in the presence of uncertain reflections and a source
point modelled by the parameter values of σ2 and ε. A disc DR of the uncertain source with
radius R = 0.05 and centre (0.2,0.1) is indicated by the black circle with a star at the centre.
The colour bar indicates the logarithm of the interior density computed on a triangulation
of the domain at the centroids. Parameter values: σ1 = 0, ω = 200π, c= 1, ρ f = 1 and η = 0.01.

distribution concentrated at r∗0. The upper right plot of Fig. 3 shows the effect of increasing
the parameter ε corresponding to an increased level of uncertainty regarding the location of
the source point. The result clearly illustrates that the energy density is now spread more
evenly over the disc DR, rather than concentrated at the centre. The lower left plot of Fig. 3
demonstrates the solution obtained when the location of the source point is known with a high
probability, but with approximately diffuse reflections at the boundaries. Here one clearly sees
the influence of the source point at the centre of DR, but the diffuse boundary reflections lead
to a smoother energy density distribution across the whole domain compared to the upper left
plot of Fig. 3. Finally, the lower right plot of Fig. 3 shows numerical simulation with diffuse
reflections at the boundaries and an uncertain source point located inside the disc DR. As
expected, the result combines the features observed in the upper right and lower left plots,
that is a more smoothly distributed solution globally, and a defocussed source term. Notice the
significant difference in the energy density distribution between upper left and the lower right
plots of Fig. 3.

5 Conclusions
We have described a framework for modelling uncertain high-frequency vibro-acoustic prob-
lems using stochastic boundary transfer operator methods. In particular, we have considered
the application of these methods to model uncertain reflections and uncertain source terms. In
the former case, we have demonstrated that a direct application of our model can give qual-
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itatively similar results to a more standard rough surface scattering model based on a linear
combination of terms due to diffuse and specular reflections. Furthermore, our approach can
easily be modified to the form of this more standard model if desired. In the latter case, we
have demonstrated that an uncertain source location can be modelled leading to focussing/de-
focussing of the source. Our future work will consider the efficient numerical implementation of
these models and their application to complex built-up systems.
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