
Wind Instruments: Paper ICA2016-756

Aeroacoustics of free reeds

Maximilian Nussbaumer(a), Anurag Agarwal(b)

(a)Department of Engineering, University of Cambridge, United Kingdom, mn406@cam.ac.uk
(b)Department of Engineering, University of Cambridge, United Kingdom,

anurag.agarwal@eng.cam.ac.uk

Abstract:

Free reeds, such as those found in the accordion and the harmonica, produce sound through
complex flow-structure interaction. This study uses extensive experimental measurements of
acoustic, aerodynamic and vibration phenomena to develop an improved physical understanding
of how a free reed produces sound. We propose a new model for the instability of the reed and for
how the oscillation of the reed tongue generates sound, examining how the characteristics of the
sound change with the key parameters. Laser vibrometer and high speed camera measurements
were used to examine the motion of free reeds. To characterise and distinguish the aeroacoustic
sound sources, directivity measurements with far-field microphones were carried out, along with
an inspection of the acoustic waveform’s causal relationship to the position of the reed in its
cycle. The experimental data matches well with simple theoretical modelling of the aeroacoustic
sources. The key sources of sound were identified to be a dipole source due to the fluctuating
force exerted on the fluid by the moving reed tongue, and a monopole source associated with the
fluctuating mass flow of air through the reed slot. We show that the mass flow fluctuation is the
dominant mechanism of sound radiation from free reeds.
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Aeroacoustics of free reeds

1 Introduction
The “Western” drawn-closed free reed, found for instance in the accordion, can be considered
as a cantilever beam clamped over a similarly-sized slot in a plate. The reed vibrates when air
is drawn through the slot at sufficient flow rates. By considering the mechanism for oscillation
and the nature of the pulsating flow, this study explores the manner in which the oscillating
system acts as a source of sound. The free reed produces sound at a clearly defined tone,
with high harmonic content. The oscillating system is dominated by the characteristics of the
reed tongue, with sound emitted at a frequency slightly below the unforced natural frequency
of the reed’s first mode of vibration over a wide range of flow rates.

Figure 1: A range of accordion reed plates, donated by Rees Wesson

In order to understand the sources of sound in the free reed system a holistic study is nec-
essary. It is crucial to understand the interaction between the flow of air past the reed and
the vibration thereof, as these are the mechanisms by which sound is produced. In this study
a new model for the sound generation by free reeds is presented, and validated against ex-
perimental data. The two key sources of tonal sound are identified as the fluctuating force
exerted by the reed tongue on the flow and the oscillating mass flow past the reed. The fluctu-
ating force acts as a “dipole” source and is dominant when the reed is plucked without airflow.
The oscillating mass flow acts as an efficient “monopole” source of sound and is expected to
dominate for the reed in flow.

2 Theory and Modelling
2.1 Flow Structure Interaction

When comparing laser vibrometer measurements of the reed in flow, with those from impulse
hammer tests, it is shown that the reed vibrates predominantly in its first mode of vibration.
The vibrating read tongue can be modelled as a clamped cantilever beam. The equation of
motion for an Euler-Bernoulli beam is given by:
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Figure 2: Clamped-free cantilever beam with force per unit length f(x, t)

where y and x are as defined in Figure 2. A, ρ and EI are the cross-sectional area, density
and flexural rigidity of the reed respectively. B is a term to capture viscous damping effects,
and f (x, t) is the transverse force per unit length exerted on the reed. To enable a rigorous
treatment of damping effects, the equation of motion should be considered in the frequency
domain. An experimentally determined Q factor (Q) can then be used to capture the damping
from various mechanisms. The orthogonality property of mode shapes can be employed to
account for the effect of a uniform pressure distribution acting as a modal forcing term. This
is done by multiplying the frequency domain equation by the first mode shape, and then in-
tegrating along the length (l) of the reed with respect to x. The resulting equation of motion
is: (
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where k is the wavenumber, ω1 is the natural frequency of the first mode and f (ω f orcing) is the
pressure force per unit length, which may be complex. Using mode shapes normalised to unit
tip deflection, β1 = 0.3915l is the integral of the mode shape over the length of the reed and
β2 = 0.25l is the integral of the mode shape squared over the length of the reed.

The pressure force acting on the reed can be determined by considering the flow past the reed.
It is assumed that a jet is formed at the sharp edges of the reed and that the downstream sur-
face of the reed is not wetted. The pumped flow is assumed to be negligible. The reduced
velocities are sufficiently high to suggest a quasi-steady approach should be valid. This allows
the flow past the reed to be calculated for a given reed position, based on a constant pressure
difference between the upstream and downstream reservoirs (p1− p4). The steady Bernoulli
equation is applied across the reed, which shows that the pressure difference across the reed
is equal to the dynamic pressure in the jet. The steady-flow momentum equation and incom-
pressible continuity are employed to derive the pressure difference across the reed based on
p1− p4 and the instantaneous gap area (Agap):

∆p2,3 = 0.5ρaV 2
j =

p1− p4

1−2 αAgap
A4

(1− αAgap
A4

)
(3)

where all variables are as defined in Figure 3, ρa is the density of the air, pi indicates the
pressure at location i, and α is a jet contraction coefficient.
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Figure 3: Schematic of flow past the reed, with nomenclature used for the quasi-steady
aerodynamic model

Equation 3 gives a pressure force that is in phase with the displacement of the reed. In or-
der to understand the mechanisms that feed energy into the system and allow self-sustained
oscillation of the reed tongue, unsteady effects must be considered. To account for the un-
steady effect of flow inertia, the unsteady Bernoulli equation should be considered for the air
in a small channel of length δ behind the reed. To further improve the model, the effects
of density fluctuations in the downstream volume can be considered using the compressible
continuity equation. This analysis is explored in detail by Tarnopolsky [1] and Millot [2]. With
modifications made to the flow-model to account for unsteady effects, it is possible to show
that there is a component of the force that is in phase with the velocity of the reed, acting
as a negative damping term by feeding energy into the oscillations. For this study, however,
it will be assumed that, despite not capturing the mechanism for self sustained oscillation, the
quasi-steady model gives a reasonable approximation of bulk trends in the flow. The quasi-
steady model can thus be employed to calculate an estimate of the flow past the reed from the
experimentally measured reed motion. The acoustic pressure emitted by the predicted sound
sources is then calculated based on this estimation of the flow. The results are compared to
acoustic measurements in order to examine the aeroacoustic hypothesis made in this paper.

2.2 Sources of Sound

For the free reed system the turbulence in the airflow will generate a non-tonal broadband
sound with weak directionality. The shedding of large scale vortex structures, observed by
Tarnopolsky using Schlieren imaging [3], will act as a sound source with a dipole directivity.
However, as vortex shedding has been found to have no significant impact of the oscillation
of the reed, the associated pressure fluctuations are likely to be small. Pulsation in mass
flow is an efficient monopole sound source and is expected to contribute significantly to the
radiated sound. A vibrating cantilever in free space would act as a dipole source, with pressure
cancellation giving a strong directivity. For the framed reed the pressure cancellation will be
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less effective, especially when the reed is inside the slot, due to the geometric constraints. The
radiated acoustic pressure is nevertheless expected to have certain dipole characteristics. This
“dipole” sound source is modelled by considering the oscillating force exerted by the moving
reed tongue on the surrounding air.

The rate of change of mass flux per unit volume (m̈) through the gap is modelled as a source
term in the acoustic wave equation. By convolution with the free space Green’s function it is
possible to derive an equation for the far-field pressure fluctuations as a function of m̈:

p′m(r, t) =
m̈(t− r/c0)

4πr
(4)

Likewise, modelling the oscillating force distribution as a source term in the acoustic wave
equation leads to:

p′f (r, t) =
cosθ

4πc2
0r

∂ f1
∂ t

(t− r/c0) (5)

where the total force exerted by the reed on the air is denoted by f, and c0 is the speed of
sound. r is the observer location at a distance of r from the reed and an angle of θ from the
upstream perpendicular. The cosθ term captures the dipole directivity of the unsteady force
distribution, in contrast to the uniform directivity found for the mass flow source.

3 Experimental Techniques
In this study, directivity tests are carried out with an arc of microphones positioned in the far-
field, as shown in Figure 4. Most previous experimental studies on free reeds have been
conducted with a single microphone in the near-field [4], but this raises a number of issues
as it is not possible to measure directivity patterns or distinguish between the acoustic and
hydrodynamic field in the near-field.

Figure 4: Schematic of experimental rig

The experimental setup consists of a suction supply, a perspex tube core with pressure instru-
mentation, a faceplate to hold the reed with aeroacoustic and vibrations instrumentation and
electronic data acquisition kit sampled from a lab computer running MATLAB [5]. The suction
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supply is composed of a large reservoir with negative gauge pressure provided by a fan. The
mean volume flow into the reservoir is measured by a rotometer. The main body of the rig
is constructed from perspex pipe and includes a venturi tube equipped with pressure tappings
that are used to measure the pressure fluctuations with Kulite pressure transducers.

The core of the rig is placed in an anechoic environment. The reed plate is slotted into a
specially designed aluminium face plate. Plasticine used to seal the joints, avoiding rattle and
air leakage. The aluminium face plate is bolted to the front of the perspex pipe, allowing air to
be drawn past the reed by the negative gauge pressure in the reservoir. An arc of microphones
is used to measure the far-field pressure distribution, and a laser vibrometer is used to measure
the velocity of the reed.

The same setup is used to perform impulse hammer tests to characterise the modes of vi-
bration. Simultaneous measurements with a laser vibrometer and a high-speed camera (HSC)
are carried out to fully characterise the motion of the reed. Image analysis of the HSC frames
allows the position of the reed with respect to the frame to be measured. It is important that
this is done dynamically, rather than just measuring the static equilibrium position, because the
equilibrium position of the reed varies with flow rate.

4 Results and Discussion
4.1 Modal Analysis

For the three reeds for which results are presented in this paper, the frequencies of the first
transverse mode of vibration were found to be 236 Hz, 743 Hz and 633 Hz respectively. The
modal quality factors were in the range of 200-400. The modal spacings between the different
transverse modes observed differ significantly from those calculated by classical Euler-Bernoulli
beam theory for a uniform reed. This discrepancy can be explained by the taper of the reeds
used. It was found that, the stronger the taper, the greater the deviation from the ideal theory.

4.2 Time Domain Analysis

From the HSC image sequences it was found that oscillation initiates at a low amplitude, with-
out reed closure, and then grows in amplitude to its steady value. As the flow through the reed
is increased, the equilibrium position shifts downstream (towards the frame), and the proportion
of the cycle for which the reed is within the slot increases.

The laser vibrometer velocity measurement is integrated to derive the reed deflection which is
found to be sinusoidal. The image sequence from the HSC can be temporally aligned with the
acoustic and vibrations measurements, allowing the points at which the reed enters the frame
to be identified on the deflection waveform, as shown in Figure 5. The acoustic pressure fluc-
tuations from a microphone at θ = 0◦ are plotted at emitted time (t− r

c0
) to examine the causal

relationship between the position of the reed and the acoustic pressure fluctuation radiated.
Black vertical lines have been drawn through the points at which the reed passes through its
equilibrium position, and where the reed enters the slot.
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Figure 5: Time domain measurements of Reed 1 with a mean flow rate of 21 l/min
(Top) –•– reed deflection versus time, — deflection at reed closure, · · · uncertainty in reed
closure, (Bottom) –•– acoustic pressure waveform at θ = 0◦, — uncertainty in time shift to
emitted time

Figure 5 shows that the dominant peaks in acoustic pressure occur when the reed is moving
through its equilibrium position, rather than when the reed is entering the slot - as has been
claimed in the literature [4]. From Equations 4 and 5 it can be seen that the pressure fluctua-
tions emitted by the two suggested sources of sound are in phase with the rate of change of
flow through the reed, and the rate of change of the pressure force respectively. The quasi-
steady model given in Equation 3 suggests that the rate of change of mass flow (m̈) has a
negative peak as the reed passes through its equilibrium position while closing, as this is when
the area through which the air can flow is decreasing most rapidly. Likewise there is a positive
peak in m̈ as the reed moves through its equilibrium position while opening. The model further
suggests that, while the reed is within the slot, the rate of change of the flow past the reed is
low. This agrees very well with the key trends observed in the measured acoustic waveform,
explaining the dominant peaks and plateaus. However, the application of the derived aeroa-
coustic source models to a quasi-steady flow does not explain some secondary features such
the small peak in acoustic pressure just after reed closure. These additional features may be
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due to effects of the unsteady flow, rather than alternative sources of sound.

4.3 Harmonic Content

Figure 6 shows the variation in the amplitudes of harmonics with flow rate measured for the
microphone positioned at θ = 0◦ for Reed 1 and Reed 2. The harmonic content increases
significantly with flow rate, especially the second harmonic which is very low at low flow rates.

Figure 6: Variation in amplitude of far-field acoustic pressure measured at θ = 0◦, for fun-
damental and first two harmonics: × ω0 , ∗ 2ω0 , • 3ω0. (Left) Reed 1, (Right) Reed 2

These observations can be explained by considering how an increase in flow rate will affect the
two key sources of sound identified. Equating the steady terms in Equation 2 shows that, as
the flow rate increases, the equilibrium position of the reed will shift downstream. The higher
the flow rate, the closer the equilibrium position is to the frame, and thus the less time there is
between the peaks in acoustic pressure and the region of low acoustic pressure when the reed
is closed. An increased flow rate thus leads to a “spikier” acoustic pressure waveform from both
sound sources. This suggests that, if the aeroacoustic hypothesis presented in this paper is
valid, there should be an increase in harmonic content (especially of the second harmonic) with
flow rate, which is clearly the case.

4.4 Directivity Analysis

The final piece of evidence to support the hypothesis of the oscillating-mass-flow and the
oscillating-pressure-force as the two key sources of sound comes from directivity measure-
ments. Figure 7 shows the directivity of the first three harmonics measured for Reed 1, at two
different flow rates.

The uncertainty in Sound Pressure Level (SPL), taking into account both the quoted micro-
phone accuracy and the positioning of the microphones is 1.6 dBSPL. The fundamental compo-
nent has negligible directivity which suggests that it is dominated by a monopole sound source.
The first and second harmonics have greater directivity, with some dipole characteristics.

8



Figure 7: Directivity plot for Reed 1, for fundamental and first two harmonics: × ω0 , ∗ 2ω0 ,
• 3ω0. (left) Mean flow rate 40 l/min, (right) mean flow rate 46 l/min

Considering Equations 4 and 5, with a quasi-steady model for m̈ and ḟ, the pressure fluctuations
from the two sources should be in phase. This allows a decomposition of the directivity field
into a monopole and a dipole component. Carrying out such a decomposition shows that the
monopole component of the fundamental dominates the sound emitted for all reeds tested. The
dipole component becomes more significant for higher harmonics. This can be explained by
considering that the fluctuating-force (dipole) term varies as ∂

∂ t (qr/Agap)
2 while the fluctuating-

mass-flow (monopole) term varies as ∂

∂ t qr. The flow area (Agap) and the volume flow rate past
the reed qr are both non-linear. The fluctuating-force term is thus clearly more non-linear than
the fluctuating-mass-flow term, resulting in higher harmonic content. The directivity results thus
support the model of a dominant monopole source due to the fluctuating flow of air past the
reed, accompanied by a weaker dipole source from the unsteady pressure force exerted by the
moving reed on the flow.

5 Conclusions
The free reed system can be analysed effectively by modelling the reed tongue as a clamped
cantilever beam subject to aerodynamic forcing from the flow past the reed. A quasi-steady
model for this flow can be used to show how the suggested aeroacoustic sources can explain
some of the key features in the sound emitted by free reeds.

The dominant source of sound from the free reed system is suggested to be the pulsation of
the airflow past the reed. It is shown from a quasi-steady analysis that the rate of change of
mass flow peaks when the reed is at its equilibrium position, and is low for the period during
which the reed moves through the frame. At higher flow rates, the equilibrium position will
move closer to the frame, so the time between the peak in m̈, and the region for which m̈ is
very low decreases. This results in a sharper peak and higher harmonic content. An equivalent
result is found for ḟ .
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The temporal alignment of the measured acoustic pressure waveform with the reed deflec-
tion gives an excellent match to the expected result for a dominant pulsating-mass-flow sound
source (applied to a quasi-steady model of the flow). The real pressure waveform exhibits
some additional features which the quasi-steady model fails to capture.

The explanation provided for the dominant peaks also provides a feasible explanation for the
rise in harmonic content with flow rate that is observed experimentally across all the reeds
tested. A more general explanation for the high harmonic content is the non-linear variation
of the flow area (Agap) with reed deflection. The above described effect is one aspect of this
non-linearity.

Inspection of the far-field acoustic pressure directivity shows a non-negligible dipole compo-
nent, especially for higher harmonics. This dipole term increases in significance compared to
the monopole term for higher harmonics, and may even exceed the monopole term in some
cases. It is suggested that this is due to the fact that the pressure force across the reed is
influenced more heavily by the non-linearities in the flow than the flow rate of air. Despite this
non-negligible dipole term, attributed to the oscillating force from the reed on the surrounding
air, the sound produced by all reeds tested was dominated by the monopole component of
the fundamental. The supports the hypothesis presented in this paper that the sound produced
by the free reed is dominated by the sound source due to the pulsating flow of air past the reed.
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